ar X iv : m at h / 06 11 24 1 v 1 [ m at h . G T ] 8 N ov 2 00 6 Trees and mapping class groups

نویسندگان

  • Christopher J. Leininger
  • Saul Schleimer
چکیده

There is a forgetful map from the mapping class group of a punctured surface to that of the surface with one fewer puncture. We relate the action of the kernel on the curve complex to a family of actions on trees. Together with a geometric compactness argument we further prove that finitely generated purely pseudo-Anosov subgroups of the kernel are convex cocompact in the sense of Farb and Mosher. As a corollary, this answers their question of local convex cocompactness for Whittlesey’s group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

متن کامل

ar X iv : m at h / 06 11 35 3 v 1 [ m at h . G N ] 1 2 N ov 2 00 6 SQUARES OF MENGER - BOUNDED GROUPS

Using a portion of the Continuum Hypothesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baire group Z, whose square is not Menger-bounded. This settles a major open problem concerning boundedness notions for groups, and implies that Menger-bounded groups need not be Scheepers-bounded.

متن کامل

ar X iv : m at h / 06 11 35 3 v 2 [ m at h . G N ] 1 6 N ov 2 00 6 SQUARES OF MENGER - BOUNDED GROUPS

Using a portion of the Continuum Hypothesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baire group Z, whose square is not Menger-bounded. This settles a major open problem concerning boundedness notions for groups, and implies that Menger-bounded groups need not be Scheepers-bounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006